1. If the data is in the critical region we...
 (a) □ Accept H_0
 (b) □ Reject H_0
 (c) □ It depends on the nature of the test
 (d) □ It depends on the size of the test

2. Saying that a test is of size 5% means that...
 (a) □ The probability to accept H_0 when H_0 does not hold is ≤ 0.05
 (b) □ The probability to reject H_0 when H_0 it holds is ≤ 0.05
 (c) □ Both

3. If the p−value of a test is small we ...
 (a) □ Accept H_0
 (b) □ Reject H_0
 (c) □ It depends on the nature of the test
 (d) □ It depends on the size of the test

We have a collection of random variables X_i, Y_i which correspond to non paired simulation results with configuration 1 or 2. How can you test whether the configuration plays a role or not ?
 (a) □ With a Wilcoxon Rank Sum test
 (b) □ With an ANOVA test
 (c) □ With either
 (d) □ With none

4. We test whether a distribution is gaussian using a Kolmogorov-Smirnov test against the fitted distribution. We obtain a p−value.
 (a) □ The true p−value is smaller
 (b) □ We have obtained the true p−value
 (c) □ The true p−value is larger
(d) □ It depends on the data

5. We have two data sets X_i and Y_j believed to be iid and from one exponential distribution each. We want to test whether the parameter of their exponential distribution is the same.

Give the design of a corresponding likelihood ratio test. Give a formula for the p–value when m, n are large.

6. We have some data set $\bar{Y} = Y_{i=1:t}$ modelled with a parametric model with $\theta \in \Theta$. Let $f_{\bar{Y}}(\bar{y}|\theta)$ be the PDF of the observation $\bar{y} = y_{1:t}$. We assume that we have a method to compute $\hat{\theta}(\bar{y})$, the maximum likelihood estimator of θ for value of the data set \bar{y}.

 (a) Give a likelihood ratio test for the test
 \[H_0 : \theta = \theta_0 \text{ versus } H_1 : \theta \in \Theta \]

 (b) Give the pseudo-code of an algorithm to compute the p–value of this test using Monte–Carlo simulation with R runs.

 (c) We run this algorithm with $R = 10,000$ and find $p = 0$. Give a 99% confidence for the true p–value. What can we conclude at a size of 5% ?

7. We consider again the case in the previous question. Using Monte-Carlo simulation, we have obtained a 99% confidence interval $[\ell(\bar{y}), u(\bar{y})]$ for the p–value. We reject H_0 if the true p is small, but since we don’t know the true p–value, we use the rejection condition $u(\bar{y}) < \alpha$. What value of α should we chose to ensure that this way of doing provides a test of size 5% ?