Forecasting Bonus Exercise

JY Le Boudec

Exercise: Compute the prediction

We have a times series Y_t . We computed the differenced time series $X_t = Y_t - Y_{t-1}$ and found that X_t can be modelled as an AR process: $X_t = \epsilon_t + 0.5 X_{t-1}$ where $\epsilon_t \sim \text{iid } N(0, \sigma^2)$

- 1. Is this a valid ARIMA model?
- 2. Compute a point forecast $\hat{X}_t(2)$
- 3. Compute a point forecast $\hat{Y}_t(2)$
- 4. Compute the first 3 terms of the impulse response of the filter $\epsilon \rightarrow Y$
- 5. Compute a prediction interval for Y_{t+2} done at time t
- 6. How would you compute a prediction interval using the boostrap?

1. Is this a valid ARIMA model?

- A. Yes because $X=F\epsilon$ and F is an ARMA filter
- B. Yes because $X = F\epsilon$ and F is a stable ARMA filter with stable inverse
- C. No because differencing is not a stable filter
- D. I don't know

Exercise: Compute the prediction

We have a times series Y_t . We computed the differenced time series $X_t = Y_t - Y_{t-1}$ and found that X_t can be modelled as an AR process: $X_t = \epsilon_t + 0.5 \ X_{t-1}$ where $\epsilon_t \sim \text{iid } N(0, \sigma^2)$

- 1. Is this a valid ARIMA model?
- 2. Compute the prediction formulae

The only thing to verify is whether the filter that defines the model for *X* is stable and has a stable inverse.

We have
$$X_t - 0.5 X_{t-1} = \epsilon_t$$
 i.e.
$$(1 - 0.5B)X = \epsilon$$

$$X = \frac{1}{1 - 0.5 B} \epsilon$$

The filter is $F = \frac{1}{1-0.5 B}$

The zeros of the numerator polynomial are none \Rightarrow OK

The zeros of the denominator polynomial are : $z - 0.5 = 0 \Rightarrow z = 0.5$, $|0.5| < 1 \Rightarrow 0$ K

Answer B

2. The point predictions for *X* are...

A.
$$\hat{X}_t(2) = X_t + 0.5\hat{X}_t(1)$$
, $\hat{X}_t(1) = 0.5X_t$

B.
$$\hat{X}_t(2) = 0.25X_t + 0.5\hat{X}_t(1)$$
, $\hat{X}_t(1) = 0.5X_t$

C.
$$\hat{X}_t(2) = 0.5X_t + 0.5\hat{X}_t(1)$$
, $\hat{X}_t(1) = -0.5X_t$

D.
$$\hat{X}_t(2) = 0.5\hat{X}_t(1)$$
, $\hat{X}_t(1) = 0.5X_t$

E. I don't know

$$X_{t+2} = \epsilon_{t+2} + 0.5 X_{t+1}$$

$$X_{t+1} = \epsilon_{t+1} + 0.5 X_t$$

We use as point forecast the conditional expectation of X_{t+2} given we have observed Y up to time t. Note that L and F are invertible, therefore observing $Y_{1:t}$ is the same as observing $X_{1:t}$ or $\epsilon_{1:t}$. Take the expectation conditional to the observation up to time t of the above equations and obtain

$$E(X_{t+2}|Y_{1:t}) = 0.5E(X_{t+1}|Y_{1:t})$$

$$E(X_{t+1}|Y_{1:t}) = 0.5X_t$$

because $E(\epsilon_{t+2}|Y_{1:t}) = E(\epsilon_{t+2}|\epsilon_{1:t}) = 0$ and idem $E(\epsilon_{t+1}|Y_{1:t}) = 0$. We can rewrite this as:

$$\hat{X}_t(2) = 0.5\hat{X}_t(1)$$

$$\hat{X}_t(1) = 0.5X_t$$

Answer D

3. The point predictions for *Y* are ...

A.
$$\hat{Y}_t(2) = \hat{X}_t(2) + 0.5Y_t(1)$$
, $\hat{Y}_t(1) = \hat{X}_t(1) + 0.5Y_t$

B.
$$\hat{Y}_t(2) = \hat{X}_t(2) - 0.5Y_t(1)$$
, $\hat{Y}_t(1) = \hat{X}_t(1) - 0.5Y_t$

C.
$$\hat{Y}_t(2) = \hat{X}_t(2) + \hat{Y}_t(1), \ \hat{Y}_t(1) = \hat{X}_t(1) + Y_t$$

D.
$$\hat{Y}_t(2) = \hat{X}_t(2) + Y_{t+1}, \ \hat{Y}_t(1) = \hat{X}_t(1) + Y_t$$

E. I don't know

We use as point forecast the conditional expectation of Y_{t+2} given we have observed Y (hence X and ϵ) up to time t.

$$Y_{t+2} = X_{t+2} + Y_{t+1}$$

$$Y_{t+1} = X_{t+1} + Y_t$$

Take the expectation conditional to the observation up to time *t* and obtain

$$\hat{Y}_t(2) = \hat{X}_t(2) + \hat{Y}_t(1) \hat{Y}_t(1) = \hat{X}_t(1) + Y_t$$

Answer C

4. What is the impulse response of the filter $\epsilon \to Y$

- A. 1.000 -1.000 -1.500 ...
- B. 1.000 -1.500 -2.250 ...
- C. 1.000 1.500 1.750 ..
- D. None of the above
- E. I don't know

Answer C

We have
$$Y_t - Y_{t-1} = X_t$$
, i.e. $(1 - B)Y = X$
Further, $X = \frac{1}{1 - 0.5B} \epsilon$

Therefore
$$Y = \frac{1}{(1-B)(1-0.5B)}$$

The impulse response can be computed by power series calculus

$$\frac{1}{(1-B)(1-0.5B)} = (1+B+B^2+\cdots)(1+0.5B+0.25B^2+\cdots)$$
$$= (1+1.5B+1.75B^2+\cdots)$$

or with matlab

```
h = 1.0000 1.5000 1.7500 1.8750 1.9375 1.9688 1.9844
```

>> h=filter([1],[1 -1],filter([1],[1 -0.5],[1 0 0 0 0 0]))

5. A prediction interval for Y_{t+2} done at t is ...

A.
$$\hat{Y}_t(2) \pm 1.96 \times \sigma$$

B.
$$\hat{Y}_t(2) \pm 1.96 \times \sqrt{1.25}\sigma$$

C.
$$\hat{Y}_t(2) \pm 1.96 \times \sqrt{2.25}\sigma$$

D.
$$\hat{Y}_t(2) \pm 1.96 \times \sqrt{3.25}\sigma$$

E.
$$\hat{Y}_t(2) \pm 1.96 \times \sqrt{4.25}\sigma$$

F.
$$\hat{Y}_t(2) \pm 1.96 \times \sqrt{5.25}\sigma$$

G. I don't know

Answer D.

We have
$$Y_{t+2} = \epsilon_{t+2} + 1.5 \epsilon_{t+1} + 1.75 \epsilon_t + 1.875 \epsilon_{t-1} + \cdots$$
 (eq. 1)

This is not a good formula for computing Y_{t+2} out of the complete series ϵ_t because the coefficients become large (the filter $\frac{1}{1-B}$ is unstable) and the error accumulates. It is better to use

$$Y_{t+2} = X_{t+2} + Y_{t+1}$$

$$X_{t+2} = \epsilon_{t+2} + 0.5X_{t+1}$$

$$Y_{t+1} = X_{t+1} + Y_{t}$$

$$X_{t+1} = \epsilon_{t+1} + 0.5X_{t}$$

as we did earlier in order to compute the point forecasts.

$$Y_{t+2} = \epsilon_{t+2} + 1.5 \epsilon_{t+1} + 1.75 \epsilon_t + 1.875 \epsilon_{t-1} + \cdots$$
 (eq. 1)

However, (eq. 1) can be used to simplify the computation of prediction intervals. Observe that the red box is necessarily $\hat{Y}_t(2)$ — to see why, take the conditional expectation given $Y_{1:t}$.

In other words (Innovation Formula):

$$Y_{t+2} = \epsilon_{t+2} + 1.5 \epsilon_{t+1} + \hat{Y}_t(2)$$
 (eq.2)

which can be used to produce prediction intervals. Conditional to the observation up to time t, $\hat{Y}_t(2)$ is known (non random) and ϵ_{t+2} , ϵ_{t+1} are iid $N(0,\sigma^2)$, hence $\epsilon_{t+2}+1.5$ ϵ_{t+1} is N(0,v) with $v=\sigma^2+(1.5)^2\sigma^2=3.25$ σ^2

Therefore a 95%-prediction interval for Y_{t+2} done at time t is $\hat{Y}_t(2) \pm 1.96 \times \sqrt{3.25}\sigma$

6. Which is a correct implementation of the bootstrap for computing 95%-prediction intervals at time t and lag 2?

- A. A
- Both
- D. None

```
Α
                         Compute the time series \epsilon_s = X_s - 0.5X_{s-1}, s = 3: t
                         do r = 1:999  {
                             draw e_s^r, s = 3: (t + 2) with replacements from \epsilon_s, s = 3: t
                             compute X_{1:t}^r, Y_{1:t}^r and \hat{Y}_t^r(2) using X_s^r = e_s^r + 0.5X_{s-1}^r,
                                                 Y_s^r = X_s^r + Y_{s-1}^r and the formula for \hat{Y}_t^r(2)
                            Y_{t+2}^r = e_{t+2}^r + 1.5e_{t+1}^r + \hat{Y}_t^r(2)
E. I don't know Prediction interval is [Y_{t+\ell}^{(25)}, Y_{t+\ell}^{(975)}]
```



```
В
Compute the time series \epsilon_s = X_s - 0.5X_{s-1}, s = 3: t
do r = 1:999 {
   draw e_1^r, e_2^r with replacements from \epsilon_s, s=3: t
    Y_{t+2}^r = e_1^r + 1.5e_2^r + \hat{Y}_t(2)
Prediction interval is [Y_{t+\ell}^{(25)}, Y_{t+\ell}^{(975)}]
```

A is simulating the entire time series, therefore it is producing a sample of the unconditional distribution of Y_{t+2} . It is not the prediction, it is what can be said about Y_{t+2} for an observer who knows the statistics of the time series but did not observe Y_1, \ldots, Y_t

B is simulating the time series from t+1 to t+2 given the data up to time t, therefore it is producing a sample of the conditional distribution of Y_{t+2} given the observed past. It is a correct implementation.

Answer B