Forecasting
Part 1

JY Le Boudec

Good days are coming
1. What is forecasting?
2. Linear Regression
3. Estimation error vs Prediction interval
4. Avoiding Overfitting
5. Use of Bootstrap
1. What is forecasting?

- Assume you have been able to define the *nature* of the load for your study.
- It remains to have an idea about its *intensity*.
- It is impossible to forecast without error.
- The good engineer should:
 - Forecast *what can be forecast*.
 - Give *uncertainty* intervals.
- The rest is outside our control.
Forecasting = finding conditional distribution of future given past

- Assume we observe some data Y_t, $t = 1, 2, 3, \ldots$
- We have observed Y_1, \ldots, Y_t and want to forecast $Y_{t+\ell}$
 A full forecast is the conditional distribution of $Y_{t+\ell}$ given Y_1, \ldots, Y_t

A point forecast is (e.g.) the mean, i.e. $\widehat{Y}_t(\ell) = E(Y_{t+\ell}|Y_1, \ldots, Y_t)$ (or the median)

A prediction interval $[A; B]$ at level 95% is such that
$$P(A \leq Y_{t+\ell} \leq B | Y_1, \ldots, Y_t) \geq 0.95$$
2. Use of Regression Models

- Simple, often used
- Based on a model fitted over the past, assumed to hold in the future
Example 6.1: Internet Traffic. Figure 6.1 shows a prediction of the total amount of traffic on a coast to coast link of an American internet service provider. The traffic is periodic with period 16 (one time unit is 90 mn), therefore we fit a simple sine function, i.e. we use a linear regression model with \(p = 3, f_0(t) = 1, f_2(t) = \cos\left(\frac{\pi}{8}t\right) \) and \(f_3(t) = \sin\left(\frac{\pi}{8}t\right) \). Using techniques in Section 4.4 we fit the parameters to the past data and obtain:

\[
Y_t = \sum_{j=1}^{3} \beta_j f_j(t) + \epsilon_t
\]

\[
= 238.2475 - 87.1876 \cos\left(\frac{\pi}{8}t\right) - 4.2961 \sin\left(\frac{\pi}{8}t\right) + \epsilon_t
\]

with \(\epsilon_t \) iid \(N_0, \sigma^2 \) and \(\sigma = 38.2667 \).
Prediction

We have obtained the model

\[Y_t = 238.2475 - 871876 \cos \left(\frac{\pi}{8} t \right) - 4.2961 \sin \left(\frac{\pi}{8} t \right) + \epsilon_t \]

with \(\epsilon_t \sim iid \ N(0, \sigma^2), \sigma = 38.2667 \)

The conditional distribution of \(Y_{t+\ell} \) given \(Y_1, \ldots, Y_t \) is

\[Y_{t+\ell} = 238.2475 - 871876 \cos \left(\frac{\pi}{8} (t + \ell) \right) - 4.2961 \sin \left(\frac{\pi}{8} (t + \ell) \right) + \epsilon_{t+\ell} \]

with \(\epsilon_{t+\ell} \sim N(0, \sigma^2), \sigma = 38.2667 \)

because \(\epsilon_{t+\ell} \) is independent of \(Y_1, \ldots, Y_t \) (iid assumption)
A point prediction is:

\[
\hat{Y}_t(\ell) = \sum_{j=1}^{3} \beta_j f_j(t + \ell) = 238.2475 - 87.1876 \cos\left(\frac{\pi}{8}(t + \ell)\right) - 4.2961 \sin\left(\frac{\pi}{8}(t + \ell)\right) \quad (6.2)
\]

and a 95%-prediction interval can be approximated by \(\hat{Y}_t(\ell) \pm 1.96\sigma \).
Virus Growth Data

- We have obtained the model
 \[\log Y_t = \log a + \alpha t + \varepsilon_t \]
 with \(\varepsilon_t \sim iid \text{ Laplace}(\lambda), \lambda = 6.2205 \)

- A 95%-prediction interval is
 \[\log Y_{t+\ell} = \log a + \alpha(t + \ell) \pm \eta \]
 where \(\eta \) is the 97.5% quantile of the Laplace(\(\lambda \)) distribution;

- In natural scale: Point prediction: \(\hat{Y}_{t+\ell} = ae^{\alpha(t+\ell)} \)
 95%-prediction interval: \([ae^{\alpha(t+\ell)} e^{-\eta}; ae^{\alpha(t+\ell)} e^{\eta}]\)
Natural scale

Log scale

\[\lambda = 6.2205 \]

Prediction interval at time 25

\[\text{PI} = [19942 ; 52248] \]
Say what is true, for this model →

A. The width of prediction interval is constant and equal to $2 \times 1.96 \sigma$

B. A is true and σ is the root mean square of the residuals up to time $t = 224$

C. A is true and σ is the root mean square of the forecast errors if we apply the model up to time $t = 224$

D. B and C

E. None of the above

F. I don’t know
Solution

The 95%-prediction interval is ±1.96σ.

The model is fitted with least squares, therefore σ is the root mean squares of residuals (Thm 3.1).

Note that the residuals are equal to the forecast errors:

\[Y_t = 238.2475 - 871876 \cos \left(\frac{\pi}{8} t \right) - 4.2961 \sin \left(\frac{\pi}{8} t \right) + \epsilon_t \]

Answer D.
Say what is true, for this model →

A. In log scale the width of prediction intervals is constant and is equal to the 97.5%-quantile of Laplace λ

B. A is true and $1/\lambda$ is the mean square of log-scale residuals

C. A is true and $1/\lambda$ is the mean of the absolute value of log-scale residuals

D. None of the above

E. I don’t know
Solution

A is true because the model in which we believe assumes Laplace noise; further, $1/\lambda$ is the mean of the absolute value of residuals (Thm 3.2).

Answer C

Note that the residuals are also the forecast errors (in log-scale).

Note that in natural scale, the prediction interval is not constant (and not symmetric).
What is the 97.5% quantile of the Laplace (rate = \(\lambda \)) distribution?

A. \(\frac{1.96}{\lambda + 1} \)

B. \(\frac{3.00}{\lambda \sqrt{\lambda} + 2} \)

C. \(\frac{1.96}{\lambda \sqrt{1 + \lambda}} \)

D. \(\frac{3.00}{\lambda} \)

E. \(\frac{1.96}{\lambda^2} \)

F. 1.96 \(\lambda \)

G. I don’t know
\(\frac{1}{\lambda} \) is a scale parameter of the Laplace distribution, hence the quantile should scale like \(\frac{1}{\lambda} \).

(hint: to simulate Laplace noise, with proba \(\frac{1}{2} \) you do \(X = -\frac{\log U}{\lambda} \) and with proba \(1/ \) you do \(X = +\frac{\log U}{\lambda} \))

All answers except D are thus impossible.

Answer D
Solution

From the CDF of Laplace we obtain $\frac{1}{2} - \frac{1}{2} e^{-\lambda \eta} = 0.975$ which gives $e^{-\lambda \eta} = 0.05$.

Note that the 95%-prediction interval for Laplace noise is $[-\eta, +\eta]$ where η is the 97.5%-quantile, because the pdf is symmetric.

We can also obtain η by computing the 95%-quantile of the absolute value of Laplace noise, which is an exponential RV, i.e. solve for $1 - e^{-\lambda x} = 0.95$

Thus $\eta = \frac{1}{\lambda} (− \log 0.05) = \frac{1}{\lambda} 2.996 \approx \frac{3.00}{\lambda}$
3. How about the estimation error?

- In practice we estimate the model parameter θ from $y_1, ..., y_t$.
- When computing the forecast, we pretend θ is known, and thus make an estimation error (ie we ignore confidence intervals on θ – it is hoped that the estimation error is much less than the prediction interval).

Let us return to an example we already saw. Assume we observe $X_1, ..., X_n$ and want to forecast X_{n+1}. Assume that we believe in the model $X_i = \mu + \epsilon_i, \epsilon_i \sim iid \ N(0, \sigma^2)$. We estimate and obtain $\hat{\mu}, \hat{\sigma}$.

- Point prediction for X_{n+1} if we ignore estimation uncertainty: $\hat{\mu}$; if we account for estimation uncertainty, $\hat{\mu} \pm 1.96 \frac{\hat{\sigma}}{\sqrt{n}}$.
- 95%-prediction interval for X_{n+1} if we ignore estimation uncertainty: $\hat{\mu} \pm 1.96 \hat{\sigma}$.
THEOREM 2.6 (Normal IID Case). Let $X_1, \ldots, X_n, X_{n+1}$ be an iid sequence with common distribution N_{μ, σ^2}. Let $\hat{\mu}_n$ and $\hat{\sigma}_n^2$ be as in Theorem 2.3. The distribution of $\sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \hat{\mu}_n}{\hat{\sigma}_n}$ is Student’s t_{n-1}; a prediction interval at level $1 - \alpha$ is

$$
\hat{\mu}_n \pm \eta' \sqrt{1 + \frac{1}{n} \hat{\sigma}_n}
$$

(2.33)

where η' is the $(1 - \frac{\alpha}{2})$ quantile of the student distribution t_{n-1}. For large n, an approximate prediction interval is

$$
\hat{\mu}_n \pm \eta \hat{\sigma}_n
$$

(2.34)

where η is the $(1 - \frac{\alpha}{2})$ quantile of the normal distribution $N_{0,1}$.

- Thm 2.6 says that (for $n = 100$) an exact interval that accounts for estimation uncertainty is $\hat{\mu} \pm 1.99 \hat{\sigma}$
 - compare to $\hat{\mu} \pm 1.96 \hat{\sigma}$

- The estimation error decays in $\frac{1}{\sqrt{n}}$ and is small for large n
Exact Formulas exist for Linear Regression with LS

THEOREM 5.1. Consider a linear regression model as in Eq.(5.1) with \(p \) degrees of freedom for \(\hat{\beta} \). Assume that we have observed the data at \(n \) time points \(t_1, ..., t_n \), and that we fit the model to these \(n \) observations using Theorem 3.3. Assume that the model is regular, i.e. the matrix \(X \) defined by \(X_{i,j} = f_j(t_i), i = 1, ..., n, j = 1, ..., p \) has full rank. Let \(\hat{\beta}_j \) be the estimator of \(\beta_j \) and \(s^2 \) the estimator of the variance, as in Theorem 3.3.

1. The point prediction at time \(t_n + \ell \) is
 \[\hat{Y}_{tn}(\ell) = \sum_{j=1}^{p} \hat{\beta}_j f_j(t_n + \ell) \]

2. An exact prediction interval at level \(1 - \alpha \) is
 \[\hat{Y}_{tn}(\ell) \pm \xi \sqrt{1 + g} s \]
 (5.3)

 with
 \[g = \sum_{j=1}^{p} \sum_{k=1}^{p} f_j(t_n + \ell) G_{j,k} f_k(t_n + \ell) \]

 where \(G = (X^T X)^{-1} \) and \(\xi \) is the \((1 - \frac{\alpha}{2}) \) quantile of the student distribution with \(n - p \) degrees of freedom, or, for large \(n \), of the standard normal distribution.

3. An approximate prediction interval that ignores estimation uncertainty is
 \[\hat{Y}_{tn}(\ell) \pm \eta s \]
 (5.4)

 where \(\eta \) is the \(1 - \alpha \) quantile of the standard normal distribution.
Figure 5.2: Left: Same example as Figure 5.1, showing the prediction interval computed by Theorem 5.1 (dot-dashed lines) and the confidence interval for the point prediction (plain lines around center values). The predictions intervals computed by Eq.(5.3) and Eq.(5.4) are indistinguishable. Right: same except only the last 24 points of the past data are used to fitting the model (instead of 224). The confidence interval for the point prediction is slightly larger than in the left panel; the exact prediction interval computed from Theorem 5.1 is only slightly larger than the approximate one computed from Eq.(5.4).
Take-Home Message

- When we use a fitted model there is some uncertainty that adds to the prediction intervals.
- In most cases we can ignore the model uncertainty because it impacts the prediction intervals only marginally.
- In some rare cases (e.g. linear regression with gaussian errors) there are exact formulas.
4. The Overfitting Problem

Assume we want to improve our model by adding more parameters: add a polynomial term + more harmonics

\[d = 0, h = 1 \]

\[d = 10, h = 3 \]

harmonics), with the hope of improving the fit, thus the prediction. The new model has the form

\[
Y_t = \sum_{i=0}^{d} a_i t^i + \sum_{j=1}^{h} \left(b_j \cos \frac{j \pi t}{8} + c_j \sin \frac{j \pi t}{8} \right)
\] (6.5)
Prediction for the better model

Figure 6.4 shows the resulting fit for a polynomial of degree $d = 10$ and with $h - 1 = 2$ harmonics. The fit is better ($\sigma = 25.4375$ instead of 38.2667), however, the prediction power is ridiculous. This

- This is the overfitting problem: a better fit is not the best predictor – in the extreme case, a model can fit exactly the data and is unable to model it.
How to avoid overfitting

Method 1: use of test data

6.3.1 Use of Test Data

The idea is to reserve a small fraction of the data set to test the model prediction. Consider for example Figure 6.5. We fitted the model in Eq.(6.5) with \(h - 1 = 2 \) harmonics and a polynomial of degree \(d = 0 \) to 10. The prediction error is defined here as the mean square error between the true values of the data at \(t=225 \) to 250 and the point predictions given by Theorem 6.2.1. The estimation error is the estimator \(s \) of \(\sigma \). The smallest prediction error is for \(d = 4 \). The fitting error decreases with \(d \), whereas the prediction error is minimal for \(d = 4 \). This method is quite
Method 2: Information Criteria

- We saw that the likelihood can be used to define a score function for the model fitting phase. e.g. for a LS model, $\log f_Y(y) = ct + \text{a function of LS score}$

- To avoid overfitting, add a penalty term to the score

Akaike’s Information Criterion (AIC) is defined for any parametric model by

$$
\text{AIC} = -2l(\hat{\theta}) + 2k \quad (6.6)
$$

where k is the dimension of the parameter θ and $l(\hat{\theta})$ is the estimated log-likelihood. It can be interpreted in an information theoretic sense as follows ([Weber-TS], Section 7.3). Consider an independent replication X_t of the sequence Y_t; then (2 AIC) is an estimate of the number of bits needed by an optimal code to describe the sequence X_t, when the optimal code estimates the distribution of X_t from the sample Y_t. AIC thus measures the efficiency of our model to describe the data. The preferred model is the one with the *smallest* information criterion.
For the linear regression model with \(n \) data points and \(p \) degrees of freedom for \(\vec{\beta} \), the parameter is \(\theta = (\vec{\beta}, \sigma) \), thus \(k = p + 1 \). AIC can easily be computed and one obtains

\[
AIC = 2 \left(p + n \ln \hat{\sigma} \right) + C
\] \hspace{1cm} (6.7)

where \(C = 2 + n \left(1 + \ln(2\pi) \right) \) and \(\hat{\sigma} \) is the MLE of \(\sigma \), i.e.

\[
\hat{\sigma}^2 = \left(1 - \frac{p}{n} \right) s^2
\]

The AIC was found in practice to have a tendency to overestimate the model order \(k \). An alternative criterion is the *Bayesian Information Criterion* (BIC)[5, 33], which is defined for a linear regression model by

\[
BIC = -2l(\hat{\theta}) + k \ln n
\]

where \(n \) is the number of observations. Thus one finds

\[
BIC = p \ln n + 2n \ln \hat{\sigma} + C''
\] \hspace{1cm} (6.8)

with \(C'' = n(1 + \ln(2\pi)) + \ln n \) and \(p \) is the number of degrees of freedom for the parameter of the linear regression model.
Best Model for Internet Data, $d=1$, h up to 10

Information criterions are able to identify the best model
Best Model for Internet Data, \(h=3, \ d \) up to 10

Information criterions are not able to identify the best model; the polynomial models are not a good class of models
Say what is true

A. When doing the fit and if we use an information criterion, we can use all data available up to time \(t \)
B. When doing the fit and if we use a score + test data we can use all data available up to time \(t \)
C. A and B
D. None
E. I don’t know
Solution

A is true

B is not true: if we use test data we need to keep a subset of the data for testing the prediction accuracy. We should not use this subset of data for fitting the model, otherwise the prediction performance is not properly assessed.

Answer A
5. Use of Bootstrap

- Assume we have a prediction model \(Y_t = f_t(\beta) + \epsilon_t \)
- The estimation of \(\beta \) is done assuming some distribution for \(\epsilon_t \);
- Assume this distribution is only approximately known; we can improve the prediction intervals if we use a better approximation of this distribution.
- For example, we can use the principle of the Bootstrap, i.e. estimate the distribution of \(\epsilon_t \) by its empirical distribution.
Theorem 2.5 (General IID Case). Let \(X_1, \ldots, X_n, X_{n+1} \) be an iid sequence and assume that the common distribution has a density. Let \(X_{(1)}, \ldots, X_{(n)} \) be the order statistic of \(X_1, \ldots, X_n \). For \(1 \leq j \leq k \leq n \):

\[
P \left(X_{(j)}^n \leq X_{n+1} \leq X_{(k)}^n \right) = \frac{k - j}{n + 1}
\]

(2.32)

Thus for \(\alpha \geq \frac{2}{n+1}, \left[X_{\left(\lfloor (n+1) \frac{\alpha}{2} \rfloor \right)}, X_{\left(\lceil (n+1)(1-\frac{\alpha}{2}) \rceil \right)} \right] \) is a prediction interval at level at least \(\gamma = 1 - \alpha \).

Assume \(Y_t = f_t(\beta) + \epsilon_t \) and apply theorem 2.5 to \(X_1 = \epsilon_1, \ldots, X_n = \epsilon_t, X_{n+1} = \epsilon_{t+\ell} \).

This gives the algorithm:

1. Estimate \(\hat{\beta} \) by some method
2. Estimate residuals \(e_t = Y_t - f_t(\hat{\beta}) \)
3. (Thm 2.5) \(\eta = \epsilon_{\left\lfloor \frac{(t+1)\alpha}{2} \right\rfloor}, \xi = \epsilon_{\left\lceil (t+1)(1-\frac{\alpha}{2}) \right\rceil} \)
4. Prediction interval for \(Y_{t+\ell} : [f_{t+\ell}(\hat{\beta}) + \eta, f_{t+\ell}(\hat{\beta}) + \xi] \)
Example

For this example, the bootstrap (done in log scale) gives asymmetric prediction interval.

Assuming Laplace noise
Example

For this example, the bootstrap gives slightly smaller intervals than the ones based on gaussian noise.